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METHOD OF DESCRIPTIVE REGULARIZATION AND
QUALITY OF APPROXIMATE SOLUTIONS

V. A. Morozov, N, L. Gol'dman, UDC 518.12:536.24
and M. K. Samarin

A method of solving Fredholm integral equations of the first kind is described, which is based
on the a priori knowledge of the arrangement of extrema and inflection points of the desired
solution and permits taking account of the fundamental qualitative regularities inherent in the
exact solution of the problem.

1°. The mathematical theory of the solution of incorrectly formulated problems has been developed
sufficiently well at this time [1, 2]. The main point of this theory is the use of a priori information about the
accuracy of giving the entrance data and (or) about the desired solution to some extent. The nature of this
information can be twofold: quantitative or qualitative. As a rule, the majority of methods use quantitative
information about the accuracy of giving the entrance data and quite general information about the "smoothness"
of the solution (the Tikhonov regularization method, the residual method). The distinctive peculiarity of the
Ivanov method of quasisolutions is the possibility of using not only information of the type mentioned, but also
just qualitative information associated with the a priori representations of the behavior of the desired solution.
As a rule, an objective basis for the presence of such information is intuitive considerations aboutthe simplic-
ity of the structure of the desired solution as well as certain general conceptions about the behavior of the
physical process being studied. The former are related to the natural tendency of the researcher to identify
the most important and essential items in the mathematical model and can also be dictated by fully defined es-
thetic considerations.

The latter appear, for example, when a perfectly evident fact in the study of the brightness distribution
of a star is the drop in intensity from the center of the star to its edges if, certainly, the star is unitary, and
the presence of two maxima if the star is binary.

Let us assume that the phenomenon being studied is characterized quantitatively by the function u =u(x),
a = x =b. Such quantitative characteristics as the variation in the function u(x), the root-mean-square value
of its k-th derivative, etc., which are often used in solving incorrect problems, can be taken as a measure of
its "simplicity. " It is also well known that the behavior of a function is modeled sufficiently effectively on an
intuitive level if the possible arrangement of its characteristic points, extremum points, and the change in cur-
vature is given. It is hence considered -that, on the whole, the function will behave in a natural manner, i.e.,
is single-valued, has no reentrant points, is sufficiently smooth, and therefore, can be drawn with one
"stroke” of the pen. Such a class of simple functions canbe givenif sections of their monotonicity and convexity
are indicated. The class of smooth functions with L. — 1 sections of monotonicity can be written by the condi-
tions

M={u(®): (— D (<0, x,<<x<xp =12, ..., L—1},

where x4, i =1, 2, ..., L are extrema of the function u(), a =x; < X, < ... < X1, = b and the parameter [,
equal to 1 or 2, governs the nature of the monotonicity in the first section. It is hence assumed that M =M
(Xgy.-vsXy,-13 L, L), i.e., the number of extrema, the alternation of sections of growth and decrease in the
function, and also the arrangement of the inner extrema can vary. Great detail in the class of functions being
considered will be achieved if sections with curvature of constant sign are also extracted. We then arrive at
the class
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V={u@@: (— )+ ()<0, 45<s <%, j=12..., N1},

where )_cJ, i=2,3, ..., N—1 are inflection points of the function u(x); a = x1 < x2 Caee < XN =b; the param-

eter v, equal to 1 or 2, governs the sign of the curvature in the first section; and N — 1 is the number of
curvature sections of constant sign, It is assumed that V = V(xz, cees XN-13 Vs N),

The nodes x; and xJ should satlsfy the following matching conditions. If x; < xz < Xg, then it is necessary
that x, < x; < X3y ++es X[~y < X[,~1 < X[,-y» but a change in the curvature can be in the last section [x1_;, b]
(and then x7,_; < x1, < band N =L +1) or cannot be (and then xy, =b and N = L), If X < X, < X3, i.€. s the cur-
vature is constant in the section [x;, x,], then it is necessary that x3 < X3 < X4 ..., XL -1 < X1, and Xy,-y =X,
i.e., N=L — 1, in the last section in the case of no change in curvature, or x1,~; < X[, < X, in the case of
a change and then X1, =b and N = L.

These conditions correspond to intuitive considerations about the "simplicity" of the behavior of a func-
tion from the class under consideration and are realized in a significant number of applied problems.

Methods of solving Fredholm integral equations of the first kind

b
Kus [ k(x plu(g)dy = (0, c<x<d,

where f(x)¢Ly[c, d], the kernel k(x, y)€L,&), @ = [c, d] X [a, b] with the implication of the conditions M and
(or) V we will call descriptive methods of regularization [3]. Namely, we consider the following mathematical
programming problem: Find the function u*(y) which is an approximate solution of the problem

WKe — fiz, — min,
ug D
where D =M, V or MNV. The kernel and right side of the equation under consideration can hence be given
approximately. ’

A singularity of the descriptive regularization method is the description of an admissible set of functions
by the extraction of characteristic points (extremal points and the change in sign of the curvature) and the as-
sumption of "simplicity" of the structure of the desired solution in the sense mentioned above.

It is known [4] that the conditions M stabilize approximate solutions in a uniform metric. As Samarin
has recently shown, the implication of convexity conditions assures stabilization of the first order of smooth-
ness, i.e., uniform convergence of the approximations together with the derivatives holds under definite con-
ditions.

It is easy to see that numerical discretization of the problem results in a quadratic programming prob-
lem with specific linear constraints. In this paper the principal attention is paid to the construction of effec~
tive numerical algorithms for the solution of the discretized problem with its specifics taken into account, and
their "operation" verified in a series of model problems. We are hence also interested in the quality of the
approximation, defined by their character itself. Let us note that the quality of the approximations is deter-
mined not so much by their accuracy as by the appearance of fundamental regularities mherent in the exact
solution, and depends greatly on the esthetic perception of these approximations.

2°, Let us go over to a discrete formulation of the problem. Let us introduce the mesh of nodes wg
{xi, i =1, m} on a segment [c, d] and wh ={yi, j =1,n} on a segment [z, b]. Assuming u(y;) =u;, we can
write

Ku= quk,.(.r, Yy u; = f(x),

=1

where gj are quadrature coefficients (the trapezoid formula later) and setting x = x; here, we arrive at the
following collocation conditions:

Ay =, 1)

where A is a matrix of order m X n with elements ajj = qjk(xi, yJ-), the vector u= (uy, Uy, ..., Uy), and the
vector f = (fis fo» ve+s Jm)s Ji =S =J(%f). We select
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Fig. 1. Results of a numerical computation

of the first model problem with the errors

k= 5%, f — 3%; Uexact; 2) Yapprox for pj =

0, i =1.40 without taking account of con-
straints;3) Ugpproxfor pj =0, 1 =1.40 with

the conditions M taken into account; 4) uapprox
for p; =1, i =1.40 taking account of the con--
ditions M.

Dla) = Pl f = zpi (Eaiﬁui—ii)z -_—.(lA&—fA,ﬁ,.l
i—=1 =1

as the target functional, where pj > 0 are certain weight coefficients.

Writing the monotonicity and convexity conditions for discrete functions u and retaining the previous nota-
tion for them, we arrive at the necessity to solve the following mathematical programming problem:
& [u] — min 2)

ueh
with specific constraints of the linear inequality type.

We chose the method of the projection of conjugate gradients as the numerical algorithmto solve the
problem (2). We were hence guided by the known fact that this method, among the quasi-Newtonian ones, re-
sults in a solution for quadratic functionals without constraints in a finite number (not more than n) steps,
equal to the rank of the matrix A. In this case we apparently have a situation which does not agree with but is
close to that when the rank of the problem is in practice substantially less than n, i.e., is quite small.

The following reasoning is the foundation for this. Every regularization method practically results ina
reduction in the influence of the "high-frequency" components of the solution in some special basis, which is
equivalent to replacing the initial problem by one similar but already degenerate problem with a low rank, and
it is known from practice that the solution of degenerate problems is realized numerically more effectively
than the solution of the so-called poorly specified problems of high dimensionality. The numerical experiments
presented below agree well with these considerations since the actual number of iterations is not very large.

Another consideration which guided us is the diminution in the calculation time and the rise in accuracy
of the calculations because of the effective realization of the projection operation itself. We succeeded in
reaching such a target for sets D of M or V type by applying an algorithm developed for these cases by one of
the authors {5, 6], and for the set D = MNV by successive utilization of additional information [3].

Let us present the computational formulas for the method of projection of conjugate gradients for the
problem (2).

Let u’€D be the initial approximation. The iteration process is constructed by means of the formulas

Wt =P (W —oa,g), s=0,12,...,
g =grad®[u], g¢ =gradd[w] —Pg—', s=1,2,..., 3)
_ (grad @[], grad @ [w—!]| —gradP[uw])
b= llgrad & [u—"]|2

Here 2, is the projection operation on the set D
|5 (2) — 4 = minjw — 2|I.
weD

The magnitude of the descent step ag is selected from the condition of a monotonic decrease in the target func-
tional

Dl — a,g ] < P). _ )

The value
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Fig. 2. Results of a numerical compu-
tation of the second model problem with
the errors k = 3%, f —2%: 1) Ugxacti 2)

| Uapprox for pi =0, i =1.40 without tak-
1y  ingaccount of constraints; 3) ugpnyox for
pi =0, i =1.40 with the conditions M

taken into account; 4) Yapprox for pj=1.5,

i =1.38, pj = 0.5, i =39.40 with the condi-
tions M taken into account,

. (gradPlwy, g°)

s~ T2(APAg .2

b [us —a;gs ]=mindu —ags],
az0

[e4

can be used to determined ag by setting ag = ag* in the case of compliance with condition (4) and setting ag =
ag*/2K otherwise k =1, 2, ...).

The gradient of the target functional in the construction of the iteration process (3) by the conjugate gra-
dients method in a finite-dimensional analog of the space L, is
grad @ [u] = 2 (A'PAu— A'Pj), ()

where the prime denotes the transpose, and the matrix is P =diag({, P, ..+» Py

If it is known a priori that the solution possesses first-order smoothness, for example, then an increase
in the accuracy and a rise in quality can be attained by applying the conjugate gradients method in a finite-di-
mensional analog of the space Wi. The gradient of the functional &[u] is then

grad®fu) = (B, D, ..., P
where E)j (G =1, n) are determined from the system of linear equations
Py — ( 05 p];l) — Pi1 = .
-, — |1+ b, + b =—D;, j=1n
oot Yi+?j ! v o

50—;¢n+1—_0 po—pn_o
which can be solved by the factorization method. Here &; Gg=1, 1, n) are the components of the vector (5), 'yJ
0 and pj = 0G =1, 1, n) are given numbers related to a spec1fic normalization of Wi.

3°, To verify the efficiency of the method being proposed, a program was compiled in FORTRAN for the
BESM-6 computer and numerical experiments to solve model problems with a known exact solution were per-

formed.
The function ugy, &) = 1—y? with
k(x, y) = V(1 + (x—y)?),

— (92— x2 — L) —2— _M
f(x) = (2 —x?) (arctg (1 — x) + arctg(1 - %)) —2—xIn AT

was taken as the exact solution in the class of piecewise-monotonic functions for the first model problem and
Uexact V) Zginn/2y with k (x, y) = x—y)?, f(x) = —16x/ 7% was taken for the second model problem. The
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2
\ Fig. 3. Results of a numerical computa-
tion of the third model problem: 1) ugyq .43

2) Ugpprox With pj =0, i =1.40 taking ac-
count of the conditions V.

-/ -5 0 o ry

computations were executed on uniform meshes whe [—2.2], w?& [-1.1] with the steps hy =0.1, h, = 0.05,
respectively. The function u’ = 0 was taken as the initial approximation. An explicit form of the projector
on the set of piecewise-monotonic functions described in [6] was used in the projection on M. To verify the
stability of the method relative to errors in the entrance data, computations were performed with uniformly
distributed random perturbations of the kernel k and the right side f.

As follows from the results of computations presented in Figs. 1 and 2, taking account of the constraints
M as well as the selection of the metric of the space (specifically, the parameters pj, j =1, n — 1) permits
obtaining an approximate solution sufficiently close to the exact solution.

The function ugyqet (V) = cos[(n/2)y] with k(x, y) =x — y, f(x) = 4x/7, x€[—2.2], y€[—1.1], hy, =0.1,
= 0.05 was taken as the exact solution for the third model problem in the class of convex functions, The
solution of this problem is represented in Fig. 3.

Roughly, teniterations are required for agreement of values of the functional &[u] with 10~7 accuracy at
two adjacent iterations in each of the three problems, which corresponds approximately to 1 min of BESM-~6
computer machine time (together with program translation). Cutting down the machine time should be achieved
by taking the result obtained after a small number of iterations by the method of conjugate gradients without
taking account of any constraints, as the initial approximation in the method of descriptive regularization.

A direct comparison of Figs. 1, 2, and Fig. 3 shows that taking account of just conditions of type M is
not sufficient for qualification of the approximations obtained as completely qualitative although the accuracy
of the approximation is totally satisfactory. The approximations in Figs. 1 and 2 are "stepwise" in nature
and agree completely with the deductions obtained in [6]. At the same time, taking account of the conditions
V results in a qualitative reproduction of the desired exact solution (Fig. 3). This deduction is probably not
related to the particular examples considered, but is sufficiently general in nature.

Let us note that improvement in the perception of the approximations is also achieved in examining the
conditions M when going over to descent according to the conjugate gradient in some other space which takes
account of the smoothness of the function desired. The same effect can be achieved if it is taken into account
that the descriptive regularization method is, as is the method of quasisolutions generally [7], a limit case of
the Tikhonov method of regularization

1Ku — fIE, + alju'® |I7, — min,
weD

when the regularization parameter o > 0 is sufficiently small but retains its influence as a stabilizing factor.

An analysis of the calculation expenditures, the electronic computer memory, and time needed to solve
the problem of the descriptive regularization method shows that they are commensurate with the calculation
expenditures needed to minimize finite~dimensional quadratic problems without constraints by the conjugate
gradient method, and therefore, the descriptive regularization method is completely suitable for utilization in
calculation practice.

The application of the descriptive regularization method is especially effective in the case when the
operator K is single; i.e., the approximation problem is solved in the set of piecewise-monotonic functions.

The fundamental hypotheses and deductions of the research are carried over, without change, to non-
linear integral equations also, but as is seen from the above, explicit assignment of the operator is not ab-
solute. This permits recommending the descriptive regularization method for a broad circle of inverse prob-
lems when the desired function is a function of one variable. The method of descriptive regularization can be
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used effectively in the mode of the method of trials when the electronic computer has a display. A new kind
of "resolver, " whose main elements are an electronic computer performing the most routine part of the work,
a display which permits operational analysis and decision making, and an operator~calculator which forms a
new model for approbation on the basis of the data obtained, hence originates.
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SOLUTION OF INVERSE HEAT-CONDUCTION
PROBLEMS ON SPECIALIZED ANALOG COMPUTERS

M. P. Kuz'min, I, M. Lagun, UDC 536.24
and S. V., Lagun

Recommendations on the application of specialized analog computers for the solution of inverse
problems of heat conduction are given. The presence of a zone of sensitivity delimiting the pos-
sible location of a primary information source is established.

Inverse problems are quite extensive in heat- and mass-transfer processes. This is explained primar-
ily by the fact that measurement of the parameters of these processes (temperature, heat-flux density, etc.,
for instance) in the range of high values under non-steady-state conditions is difficult, and a completely in-
surmountable problem in a number of cases. In such situations inverse problems are the most acceptable
method of solving these problems. v ‘

Inverse problems of heat conduction are used in thermal power plants to establish the thermal gasdynam-
ic circumstances according to the results of temperature measurements, to determine uniqueness conditions,
and for machine design. In connection with the growing heat loads, the determination of the thermal environ-
ment in the high-temperature range, i.e., the heat-flux density g5 and the surface temperature Tg, the tem-
perature of the gas stream Tg flowing around a solid, the coefficient of heat transfer between the hot gas
stream and the solid ¢, etc., according to the results of temperature measurements in the low-temperature
range, is a problem which must be solved in engineering. Inverse problems of heat conduction are important
in the design and construction of heat shields, in the prediction of the thermophysical properties of materials
with a given operating range, etc. '

If the process of heat transfer between a medium and a solid is considered, then depending on the loca-
tion of the quantity to be determined inverse problems of heat conduction can be separated into three classes:
internal, external, and combined. We shall refer such problems for which the parameters .(characteristics)
within the body or on its surfaces are determined as a result of the solution to internal, problems when the
characteristics of the environment are found to external, and problems for which combinations of parameters
- of the first two classes will be the subject of solution to the combined classes. A diagram of the classifica~
tion of inverse problems of heat conduction is shown in Fig. 1. '
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